PERI INSTITUTE OF TECHNOLOGY DEPARTMENT OF ECE

Two days National Workshop On Communication & Image Processing Using Matlab "CIPM 2017"

MATLAB EXERCISE -4

- 1. Write a function that returns the two roots of a quadratic equation, given the three arguments a, b and c. Test the function from the command line
- 2. Write a function that returns the mean and standard deviation of a vector of numbers (input vector). While Matlab supplies the mean() and std() functions, try just using the sum() and length() functions.
- 3. Write a function that reverses the order of letters in a string, and returns the new string.
- 4. Use the eval() Matlab function to evaluate strings such as:
 - $\exp 1 = 5*6 + 7$;
 - Note this, and feval(), is very useful for dynamic programming
- 5. Use a cell array to store a list of expressions, stored as strings. Then use eval() and a for loop to iterate over the expressions and evaluate them.
- 6. Create two simple data structures to modify your solution to (1). Use one data structure to pack the parameters of the quadratic equation into a single variable, and use another to return the roots inside a single data structure
- 7. Create the vector 0:pi/20:2*pi and use it to sample the sin() function. Plot the results and edit the figure window to put labels on the figure. Save the figure (.fig) and export a .jpg file.
- 8. Use the meshgrid() function to sample a 2 dimensional input space between 0 and 2p, then use the data to sample the function $\sin(x_1)*\cos(x_2)$. Plot the results using the mesh() function.
- 9. Create a GUI that prompts the user for a number and then displays double that number next to the entered value.
- 10. Start Simulink and using a sin() **source** and a **scope sink**, view the signal over 10 seconds.
- 11. Change the frequency of the sin() source and again compare the results. Next change the simulation length.
- 12. Build the first order system H(s) = 1/(1+3s) in the model and pass a sin() signal through the system. Make sure you run the simulation for a long enough time for the transients to die down and the system to settle.
- 13. Replace the first order system in (6) with the second order system, what is the difference when the system settles down $H(s) = 1/(1+2s+s^2)$.